Package: survBootOutliers 1.0
survBootOutliers: Concordance Based Bootstrap Methods for Outlier Detection in Survival Analysis
Three new methods to perform outlier detection in a survival context. In total there are six methods provided, the first three methods are traditional residual-based outlier detection methods, the second three are the concordance-based. Package developed during the work on the two following publications: Pinto J., Carvalho A. and Vinga S. (2015) <doi:10.5220/0005225300750082>; Pinto J.D., Carvalho A.M., Vinga S. (2015) <doi:10.1007/978-3-319-27926-8_22>.
Authors:
survBootOutliers_1.0.tar.gz
survBootOutliers_1.0.zip(r-4.5)survBootOutliers_1.0.zip(r-4.4)survBootOutliers_1.0.zip(r-4.3)
survBootOutliers_1.0.tgz(r-4.4-any)survBootOutliers_1.0.tgz(r-4.3-any)
survBootOutliers_1.0.tar.gz(r-4.5-noble)survBootOutliers_1.0.tar.gz(r-4.4-noble)
survBootOutliers_1.0.tgz(r-4.4-emscripten)survBootOutliers_1.0.tgz(r-4.3-emscripten)
survBootOutliers.pdf |survBootOutliers.html✨
survBootOutliers/json (API)
NEWS
# Install 'survBootOutliers' in R: |
install.packages('survBootOutliers', repos = c('https://jonydog.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jonydog/survbootoutliers/issues
Last updated 6 years agofrom:a6ccd6084e. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win | OK | Nov 01 2024 |
R-4.5-linux | OK | Nov 01 2024 |
R-4.4-win | OK | Nov 01 2024 |
R-4.4-mac | OK | Nov 01 2024 |
R-4.3-win | OK | Nov 01 2024 |
R-4.3-mac | OK | Nov 01 2024 |
Exports:display.obs.histogramget.whas100.datasetsurvBootOutliers
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Auxiliar function that displays the concordance histogram associated with the observation. | display.obs.histogram |
Function that retrieves the WHAS100 dataset. | get.whas100.dataset |
Extract the most outlying observations following a criteria based on the bootstrapped concordance with parallel processing | survBootOutliers |